
To Stop or Not to Stop? A Case Study of an Early
intervention for Data Collection

Yu-Chun Yen, Hidy Kong, Jingning Zhang, Yu Wu, and Qian Cheng
Department of Computer Science

University of Illinois, at Urbana-Champaign
{yyen4, hkong6, jzhng117, yuwu4, qcheng4} @illinois.edu

ABSTRACT

Deciding the sample size of a qualitative survey is a critical issue

in crowdsourcing technology. Insufficient feedback might result in

the loss of diversity among possible answers while too much

feedback results in a waste of time and money. In this paper, we

address the problem in paid crowdsourcing technology. We

examine the data saturation pattern over time when collecting

feedback about a Kickstarter project page. Our main contribution is

twofold. First, we built an easy-to-use website to let project creators

post a simplified version of their Kickstarter page in Amazon

Mechanical Turk. Secondly, we designed an interactive

visualization page allowing project creators to check saturation

level according to the current feedback pool. Our system takes the

advantage of its generalized framework that could be applied to any

feedback systems that cannot provide the guidelines for deciding

the appropriate sample size.

Categories and Subject Descriptors

D. H.5.3 [Information Interface and Presentation]: Group and

Organization Interfaces -- Evaluation/methodology

General Terms

Crowdsourcing, Data saturation

Keywords

Keywords are your own designated keywords.

1. INTRODUCTION
Crowdsourcing has become a near-ubiquitous technology allowing

a requester to have scalable and diverse feedbacks from crowd

workers in an efficient way. Various platforms are designed to

leverage crowdsourcing technology for collecting subjective

feedback. FeedbackArmy[1] claims to receive desired quantity of

usability test results for website creators in two minutes.

UsabilityHub[2] allows users to upload their designs or mockups

and generate the survey page for them so that they can get critiques

from real people. Some platforms ask requester to find critics by

inviting their friends though social network site such as Facebook,

while others find anonymous paid workers from crowdsourcing

platform such as Amazon Mechanical Turk. Amazon Mechanical

Turk [3] is a famous platform that provides a marketplace for the

requesters to publish tasks and for workers to find work

opportunities. Beyond spreading tedious works such as image

labeling or text translation, requesters are now expecting to collect

diverse feedback from crowd workers. Due to the divergent

background of different workers, requesters have a chance of

acquiring popular impression from a reasonable size of crowd

workers.

The number of feedback is a crucial issue when requesters

solicit for subjective feedback. Too little feedback would result in

missing a portion of viewpoints from general public while too much

feedback results in a waste of time and money. However, guidelines

for determining the sample sizes for qualitative survey are virtually

nonexistent. In current crowdsourcing platforms, systems try to

alleviate such problems by asking requesters to decide the number

of feedback by themselves. However, users do not have a good

sense of what the appropriate number of feedback is. Our first

experiment shows that the variance of desired number of subjective

feedback among different people is incredibly large, which

confirms the difficulty of determining the number of feedback.

Most people claim that they want to get as much feedback as

possible to collect all the possible ideas generated by the public.

However, the more feedback the requesters collect from paid

workers, the more money they have to pay. Even for those

requesters who invite their friends for free answers, more data

requires a longer data collection time. To overcome this problem,

we designed a novel system to minimize the number of feedback

while acquiring representative results from the crowd workers.

Minimizing the number of feedback is a popular issue in paid

crowdsourcing technology. Requesters are not pleased when they

pay for undesired feedback. Moreover, meaningless feedback

disturbs data analysis by adding noise to the result. Detecting the

reliability of individual feedback is one approach to reduce

undesired expense [4][5]. Researchers have investigated various

approaches to avoid spammer so that requesters can reject

meaningless feedbacks. In addition to passively removing

undesired data, actively stopping the collecting of new data is

another approach to minimize the payment. Guest G. [6] et al

present the idea of data saturation when determining the sample

size for qualitative interviews. They define the concept of

“saturation” as the point at which no new information or themes are

observed in the data. Similarly, we define “data saturation” as the

point at which new feedback provides no additional information

compared to earlier feedback. Our second experiments show that,

for some survey questions, the point of saturation occurs before the

end of data collection, indicating that the data that comes after the

saturation point wastes time and money to some degree.

We observed the pattern of data saturation over time by

studying the feedback of Kickstarter projects collected from

Amazon Mechanical Turk. We put a simplified Kickstarter project

page along with survey questions on Mechanical Turk. Workers

who selected the HIT had to answer three questions based on the

project page provided in the HIT. The main contribution of this

work is four-fold. First, we designed an interface for a Kickstarter

project creator to easily post his project page on Amazon

Mechanical Turk. Second, we visualized the data saturation pattern

for project creator in multiple viewpoints. Third, the saturation

analysis not only provides the degree of saturation at each point but

also gives a summary of feedback among crowd workers. Finally,

our system can be applied to any feedback system, particularly

those with a paid system. Requesters can make a decision to stop

collecting new data early once they feel satisfied by existing data.

To the best of our knowledge, there has not been prior research

examining data saturation throughout data collection process using

crowdsourcing technology. We therefore designed our study to

answer three research questions. RQ1 How do people decide the

number of subjective feedback when they collect data from MTurk?

RQ2a: Is there a saturation pattern on sequential feedback data?

RQ2b: Does the user-defined number match the point of saturation?

RQ3: Can we have a visualization that helps the users decide when

to stop?

This paper is organized as follows. We start with the

description of two experiment settings used to answer proposed

research questions. We then present a system that automatically

generates the simplified Kickstarter page and posts it on MTurk to

receive feedback from workers. A case study on a manual

coffeemaker Kickstarter project is presented. The saturation pattern

on collected feedback are visualized in multiple viewpoints and

shown in the result. Finally, the paper concludes with an analysis

of our results, and some discussion of future work.

2. RELATED WORK
In recent years, crowdfunding platforms such as Kickstarter have

become more and more popular. At the first glance, this grassroots

approach of fundraising may sound nice and easy. In reality,

conducting a successful campaign requires a lot of skill and effort.

People spend thousands of dollars in preparation for advertising

material. Even after the campaign starts, people still need to spend

lots of time interacting with supporters. However, despite all these

money and effort, half of the campaigns still fail. In order to solve

this problem, researchers have tried to use various ways to predict

the success rate of a project. A common approach is to use machine

learning algorithms. By training on past successful projects, the

algorithm can give a decent estimate of the success rate. Moreover,

the trained model also sheds light upon how people should organize

their project page and phrase the texts [16][17]. Other researchers

have taken the social approach. By closely monitoring the reaction

from social media right after the campaign launched, researchers

can roughly tell whether the project can succeed or not. [18]

Ever since Amazon Mechanical Turk platform launched,

researchers began to notice the problem of low work quality. Due

to the nature of crowdsourcing, workers come from a wide range of

demographic groups equipped with various levels of skills and

motivations. Even with the same worker qualification limit, the

content generated from two workers can differ drastically. How to

weed out the less useful inputs and extract meaningful information

from the large pool of worker feedback is a question researchers

have been trying to answer for years. One of the most common

method people have used is the majority rule [12]. The answer

provided by the most workers will be taken as the most important

answer. However, this approach is far from perfect. Researchers

have tried to improve this method in a few different ways. Crowd

workers have different levels of expertise and sometimes the tasks

may also have various level of difficulty. Researchers have used

probabilistic approaches to take these variance into consideration

and outperform the traditional majority vote heuristic [5]. In

addition, since the majority vote method usually requires a certain

level of redundancy to confirm answers, this approach may incur

unnecessary high cost by collecting too many similar feedbacks.

Researchers have tried to take algorithmic approach to minimize

the total cost of the tasks [11]. Others have been using crowd

workers to detect redundant information [12].

One way to efficiently present redundant information is

clustering. By binding similar ideas into clusters, we can reduce a

large set of opinions into a few representative ideas. Clustering

appears to be a natural solution for viewing crowdsourcing

feedbacks, which usually come in large quantities and with high

level of redundancy. Most clustering algorithms are based on some

sort of similarity measures. The measure choice usually has a heavy

influence over the formation of the clusters [13]. Traditionally,

people measured the similarity between pairs through some feature

comparisons. The more features a pair shares, the more similar the

pair is. Researchers have also proposed using other hidden pattern

to measure similarity [14]. If a pair of items always acts in the same

way, we may say they are similar to each other even though they

share few features in common. Other researchers have taken a more

straightforward approach of using humans to evaluate similarity

between items [15]. All these methods help to generate a concise

view of the crowd workers’ opinions.

3. EXPERIMENT
In this section, we first study the degree of variance on deciding

the number of HITs in MTurk. Second, we publish a Kickstarter

project page along with 5 survey questions. We will examine the

saturation pattern within collected data.

3.1 Decision on the number of HITs
For the first research question, we conducted a scenario-based

survey through MTurk. The instruction for the task was as follows.

Kickstarter is a new way to fund creative projects. (You can

learn more about it here if you're not familiar with

it.https://www.kickstarter.com/hello?ref=footer) Imagine you are

launching a waterproof keyboard project on Kickstarter. Now you

want to ask questions on MTurk so that you can get the general

impression of the project from the crowd.

We then asked them to decide the number of feedbacks that they

thought would be sufficient for a given question. We collect 30

HITs for each question from MTurk with the qualification

restriction of workers having greater than 95% acceptance rate.

Question in each HIT is selected from the following list:

 Provide one scenario in which this product would be useful.

Please describe the scenario in detail.

 In what situation do you think this product would not be a

good product?

 Add a feature that will convince you to buy the product?

 Which feature in the Kickstarter page do you think the
most informative to attract people's attention.

There are two assumptions to support this experiment. First,

workers are the actual people who give answers. We assume they

are the people best known the quality of individual answer and then

estimate the number of answers they would be satisfied by

receiving such answers. Second, imagine being a Kickstarter

project creator does not need expert knowledge than asking workers

to imagine themselves as designers. Workers are at some degree

qualified to answer such questions.

3.2 Feedback on Kickstarter project
To test whether the saturation point occurs before the end of data

collection process, we posted a Kickstarter project about a manual

https://www.kickstarter.com/hello?ref=footer

coffeemaker product on Mechanical Turk and asked the questions

provided in the Section 3.1. We collected 30 HITs for the

coffeemaker project, and will regard answers given for the same

question as a feedback pool. Therefore, for each question, we got a

feedback pool of size 30. We will further examine the saturation

pattern within each feedback pool.

For the last questions, we aimed to extract the most informative

features in a Kickstarter page. According to the characteristic of

working style on MTurk, a task should be a micro-task. Workers

are not expected to pay attention on an individual HIT for a long

time. Therefore, reading the whole project page would break the

rule of micro-task and might decrease the quality of collected

feedbacks. In addition, since we are only looking for the general

impression rather than a holistic judgment on the product, it was

not necessary for workers to read the whole page.

The first three questions were asked to collect diverse feedback

from crowd workers. We published these 30 HITs at the same time.

For each feedback pool, we further apply our algorithm to detect

the saturation point independently.

4. IMPLEMENTATION

4.1 Workflow of Proposed System
Our proposed system is constructed with two functionalities: HIT

posting and feedback visualization. The HIT posting functionality

allows requesters to post their ideal HITs on Amazon Mechanical

Turk through our user interface with their unique Amazon Web

Service (AWS) credentials. After successfully posting their HITs,

the requesters can track their HITs using the identity number the

system provides them. The feedback collection functionality

provides a dynamic HITs information tracking and results in a

visualization for the users to decide whether they should stop

collecting the HITs for the batch or not. The general workflow of

the system is shown in Figure 1.

Figure 1 Workflow of proposed system

The HIT posting page was developed with boto, a python interface

supporting Amazon Web Service APIs. In the boto.mturk package,

APIs are provided to manage activities on Amazon Mechanical

Turk, including connection, HIT layout design, HIT creating and

tracking, price managing and notification. Several major APIs were

applied to implement our system:

connection.MTurkConnection() allows providers to connect to

Amazon Mechanical Turk with their AWS access keys. This is one

of the essential functions for requesters to communicate with

Mturk.

create_hit() is a key function that publishes HITs on Amazon

Mturk, either on the real Mturk or on SandBox. We created a survey

HIT file that stored the questions, URLs and control parameters.

Then we were able to decide to publish the HITs on SandBox or

real Mturk using control flags.

get_assignment() is the function that obtains HIT completion

information in real time. It returns the answers for each question

posted, completion time, worker identity information and so forth.

Calling this function periodically helped us update the dynamic

feedback.

Posting HITs

In the posting HITs functionality, AJAX technology is applied for

the front-end development, while PHP is used to pass variables and

call system functions at the server-end.

The design of the user interface is shown in Figure 2. On this page,

we allow the requester to post surveys for his Kickstarter project by

simply copying the URL of the original project page. The requester

also has to enter the HIT title, description, and keywords that will

be displayed on the created HIT page. The requester can set control

parameters about how the HIT will be published by entering the

reward amount, number of HITs, time allotted, expiration date, and

approval delay, as he would if he were to post directly on Amazon

MTurk.

Figure 2 User interface for requesters to post their HITs.

The Kickstarter project page is simplified by removing

redundant and less informative sections from the original page. We

first crawl the project page by passing the URL provided the worker

to Scrapy. Then we parse the HTML document and save the

necessary information such as the project title in a .json file. Our

HTML file automatically reads the json when it is loaded to

produce a simplified HIT page shown in Figure 3. This simplified

page is shown to the workers in the HIT, and a link to the original

Kickstarter project page is provided in case the worker wants to get

more information on the project.

Figure 3 Simplified Kickstarter project page in the HIT

4.2 Feedback Visualization
The system offers an interface that reports the feedback from the

crowd to the requester. Instead of showing tables and numbers, we

chose to use several interactive visualizations to help the requester

explore responses. We present the feedback saturation pattern for a

single question in one page. Users can easily choose one question

from a list of questions to visualize and can also switch between

questions to compare them.

There are four major goals of the visualization feedback:

1. Display the distribution of feedback clusters

2. Present the transition of saturation level

3. Demonstrate the evolvement of major feedback clusters.

4. Replay intermediate statuses of the entire feedback process

In the following paragraphs, four major functional modules are

described along with their contributions to accomplish the goals

above.

4.2.1 Clustering Algorithm
Our clustering algorithm is based on the k-means clustering

algorithm. The input of the clustering algorithm is the pairwise

similarity score of each pair of answers within an answer pool. We

put the first answer in the first cluster as a starting point. Then for

each new answer we receive, we calculate the average of the

similarity scores between the new answer and all the answers in the

first cluster to find the similarity score for that cluster. After finding

the cluster average similarity scores for all the clusters, we place

the new answer in the cluster with the highest similarity score if the

similarity score is greater than the threshold score of 50%. If the

highest similarity score is lower than the threshold, we create a new

cluster and place the new answer in that cluster. This algorithm

worked fairly well for finding the appropriate cluster when there

were more than three answers in the cluster. However, we wanted

to ensure that clusters with two answers had higher similarity scores

since the clustering was based on only one similarity score. So we

added an additional step of dividing all the clusters with only two

answers and finding a new cluster for those answers with a higher

threshold of 80%.

4.2.2 Cluster Distribution Graph
The cluster distribution graph is located at the bottom of the

interface. Each circle in the view represents an answer from the

crowd for the question. All the circles are grouped into clusters,

corresponding to the results of clustering algorithm. Clusters are

evenly spaced and circles within a cluster are organized with a pack

layout. We chose to use spatial mapping to convey the concept of

response clusters.

As described above, we also extract the keywords for each

response cluster. Keywords for one cluster are listed within its area.

The keywords are alternately placed at the top or bottom of the

cluster as shown in Figure 4 to avoid the overlapping of keywords

of adjacent clusters. If the answer is gathered as free form text, the

full content of the answer is displayed when the cursor hovers over

its circle. This gives the user the access to the raw data from MTurk.

4.2.3 Saturation Graph
The saturation graph aims at presenting the transition of saturation

level over time. Each circle in the graph represents one answer, and

its height shows the overall saturation level by the time that answer

came in. The x axis is the number of responses, starting from the

first to the last. Since the responses are sorted by time, this axis is

also the time axis. The typical time axis spaced by a unit of time

such as seconds, minutes, or hours is not suitable here because the

actual time between the answers is irregular and the graph may be

too sparse. The y axis is the saturation level, with a maximum value

of 1.0 as defined. This is a typical dot graph layout. Since there is a

new saturation level as each response comes in, circles are used to

maintain consistency.

A shortcoming of typical dot graphs is the difficulty to read

values accurately because the circles are far away from the axes.

One solution is to increase the granularity of ticks on the axes.

However, the numbers on the axes will be less readable due to the

limited space. To balance this trade-off, a horizontal line and a

vertical line will appear when the requester hovers over a circle, in

order to pinpoint the circle’s value on both axes. The exact values

will also be displayed.

Different from the MTurk dashboard, this visualization

feedback enables the requester to access all intermediate states of

the feedback process. When the requester hovers over a circle, all

the answers that were received after the selected answer will fade

out on both Saturation and Distribution graphs. This technique

provides a quick manual access to an intermediate state. We chose

the hover event as a trigger to make this operation as quick and

simple as possible so that different states can be compared with the

least effort.

Figure 4 Feedback visualization interface

All the circles are filled with the same color as in the Cluster

Distribution Graph. It not only enhances the consistency between

graphs but also provides more information to help requester

identify the trend of clusters.

4.2.4 Cluster Evolvement Graph
The Cluster Evolvement Graph depicts the growth of response

clusters over time. The user can toggle between the Saturation

Graph and this graph. The x axis marks the number of answers like

the x axis of the Saturation graph. The y axis is the amount of

responses in one cluster. Different from Saturation Graph, which

visualizes the response set as a whole, this graph is for comparing

different clusters. Therefore, each cluster is represented by one line

in this graph, which matches the cluster color. Line was selected to

represent a cluster to convey the concept of trend and evolvement.

Line graph also has the same accuracy problem as the dot

graph. However, it is harder for the user to pick the point they want

to explore on a line with a mouse. Therefore, instead of actively

display a value for a point, we chose to display the axis grid to

passively provide a measure to the user.

Another problem is the overlapping of the lines. The first cause

of the overlap is the large number of clusters. As a solution, we

reduced the number of lines by eliminating all the clusters that end

up with only one answer, which actually eliminated a majority of

the lusters. All the remaining clusters had more than one answer in

them and were considered as major clusters. The second cause over

the overlaps lies in the nature of line graph with multiple lines.

Some lines will inevitably overlap since they have the same values.

Therefore, a legend was added to help identify the lines as shown

in Figure 4. More importantly, the boxes in the legend act as toggle

buttons for the requester to hide or show certain clusters. The fill of

a legend box indicates the visibility of the corresponding line.

4.2.5 Process Replay Animation
All three graphs are not limited to displaying the final results as

they can all be animated to replay the entire feedback process from

the first answer till the last. The user can also adjust the replay

speed and skip through the responses manually. All the graphs will

be updated as the animation is played. These functions give the

requester a full access to all the intermediate states of the process

and decide when to stop gathering responses.

All four of the modules above are designed to accomplish the

four goals proposed at the beginning of this section.

The overall design is aimed at clarity and simplicity. A mono

color scheme is used for all the background components such as

axes and buttons. In contrast, more diverse colors are used on data

points and lines to make them to stand out from the background.

All the interactions are designed to be intuitive and understandable

for everyone.

5. RESULT

5.1 Number of HITs estimated by the workers
The workers provided a wide range of estimated number of HITs

and various reasons for deciding the number of HITs to post on

MTurk. Although we provided three different questions for

workers, the distribution of the number of HITs were similar for all

three questions regardless of the question contents. It indicates that

workers do not take the size of possible answers into account but

just make a general guess about the number when they decide to

receive subjective feedback. Due to the similar distribution on
estimated number of Hits for all three questions, we combine all the

results regardless of different questions. We removed irrelevant

answers before analysis. Four workers had misunderstood the

question ‘how many HITs would you post to MTurk’ as ‘how many

answers would you ask from each of the workers per HIT’ and

answered in the range of one to five with the reason that it will tire

out the workers if more answers were required. We discarded these

answers since they did not answer the question that was actually

asked. The remaining answers were categorized into three

categories: 10-50 HITs, 100-500 HITs, and 1000+ HITs.

Table 1 Number of HITs estimated by workers

Est. Range of HITs #Workers

<10 10

10-50 15

50-100 0

100-500 31

500-1000 0

1000 8

10000 2

Reasons for choosing the number of HITs

The first group, who answered that they would post ten to fifty HITs,

was concerned about the tradeoff between the quantity of the

answers and the effort that is required to go through each of the

answers. They were worried that an important idea might get

overlooked if there were too many answers. One worker said, “I

think 50 is a good sample size--not so large that the important

points get lost, but big enough for many points to be brought up.”

The second group was more concerned about the tradeoff

between the amount of information they could gather and the

expense they have to pay to get the claimed number of answers.

They avoid the expense becoming a “sinkhole of money,” but still

wanted to have a “good sample group to see what the general

consensus was from users.” The third group, which had less

concern about the money, wanted to ensure a good sample of all the

ideas even if it meant investing a little more money for it. A worker

who estimated a thousand HITs reported, “Such a simple task on

MTurk wouldn't cost much, so I feel I could easily afford 1000

answers. In addition, I feel that 1000 is a good set to get some

quality thoughts, at least initially.” Assuming that each HIT costs

10 cents, a thousand HITs would cost a hundred dollars. It is

reasonable to invest a hundred dollars if it could help fundraise

successfully since many projects have a goal amount that exceeds

ten thousand dollars.

Figure 5 Heatmaps of pairwise similarity scores for three

questions

Each group had legitimate reasons for choosing the number of

HITs. However, most of them did not have a concrete idea of why

they chose the number of HITs they did. Most workers used the

words ‘I think’ or ‘I feel’ to support their decisions rather than

backing up the number of HITs with a more objective theory or

data. This shows that the number of HITs on MTurk can be

arbitrary, and the requester might not know the appropriate number

of HITs at the time of posting the request.

5.2 Simplified Kickstarter Project Page
In response to the question ‘What was the most informative part of

the Kickstarter project,’ 31% of the workers answered ‘Video.’

They also vote for the Image/Animation feature provided in the

description page. We notice that nearly all projects under Design

category provide one promotional videos and various number of

images. Some projects even provide more than ten images in their

pages. To make our generated simplified project page more

consistent in structure, we choose promotional video for the

campaign, project title along with its essential information such as

short description, goal amount, and creator’s name as the elements

of simplified Kickstarter page.

5.3 Feedback on Kickstarter Project

5.3.1 Pairwise Answer Similarity
We collected 30 answers for each questions listed in Section 3.1;

the answers are used to answer RQ2 by checking for the existence

of the saturation point and the general pattern of the answers. To

acquire the saturation pattern, we calculate the saturation score at

each data point. The saturation score come from two-stage process.

First, find the similarity score for each pair of answers within the

target answer pool. In this work, the similarity scores were

manually coded by our group using the following rubrics.

0%: The answers have no common idea and describe completely

different concepts

25%: The two answers present different concepts about a similar

idea.

50%: The two answers share the same idea, but one answer

provides additional information that does not relate to the

common idea.

75%: The two answers share the same idea, but one answer

provides additional information that relates to the common idea.

100%: The two answers have, and only have, the exact same idea.

A heat map of the pairwise similarity scores for each question is

presented in Figure 5. Red blocks indicate answer pairs are coded

100% identical to each other in terms of given concept and blue

blocks indicate answer pairs that are 0% similar to each other.

Figure 5 shows that the answers for Question 1 were mostly

similar to each other while answers for Question 3 were most

distinctive. This is not surprising since Question 1 asked about a

scenario that the product would not be useful in, and the scenarios

are mostly based on the shortcoming of the product. The product

had distinctive shortcomings, such as the small quantity of coffee

that could be made at one time and the time consuming process of

hand dripping coffee. Thus the majority of the scenarios for

Question 1 covered those issues.

On the other hand, Question 3 asked for an additional feature

of the coffee maker that would convince the worker to buy the

product. A wide range of possible features was available and the

additional feature was related to worker’s individual preferences

rather than the characteristics of the coffee maker. Thus answers to

Question 3 were rarely similar to each other.

5.3.2 Saturation Level
The saturation level marks how close the answer set is to being

completely saturated. In theory, a completely saturated answer set

already contains every possible idea and the incoming answers

would not contain any new information. Therefore, 1.0 means that

the answer set is not saturate at all, and 0.0 indicates complete

saturation of the answer set.

The saturation level was derived by calculating the ratio of the

new answers to the total number of answers in the set. An answer

was considered as new when the average of similarity score of its

top three similar answers was less than 50%. It indicates that we

cannot find at least three answers provide the same ideas as the new

data. So if we kept on getting new answers, saturation level would

rise till it reaches 1.0 as the answer set moved away from complete

saturation. Conversely, the saturation level would get lower if we

Figure 6 The main idea clusters generated from crowd

workers for Question 1 (top) and Question 2 (bottom)

Figure 7 The saturation level graph for each of the three

questions

got more answers that repeated the ideas from previous answers as

the answer set moved towards complete saturation.

So based on the similarity scores shown in Figure 6, saturation

level for the final answer set for Question 1 was expected to be

lower than the saturation level for the final answer set for Question

3.

This resulting saturation pattern for each question was

presented in Figure 6. The graphs in Figure 6 mark the saturation

level as each answer comes in. The x-axis indicates the answer

received at that time, and the y-axis indicates the saturation level

after that answer is added to the answer set. All the graphs start at

the saturation level of 1.0 as each answer is new at the beginning of

the data collection. The saturation level of both Question 1 and 2

drop after the fifth answer is added to the answer set while the

saturation level for Question 3 remains at 1.0 till the 11th answer.

The saturation level of Question 1 drops dramatically till

answer 11, which can be seen by the steep negative slope in the top

graph in Figure 6. After receiving answer 11, the saturation level

does not change much and only fluctuates a little bit till the end of

the collection. This figure answers RQ2 and RQ3 well since it

clearly shows that the answer set has reached a saturation point

before the end of the collection, and it notifies the requester that it

would be safe to stop the batch around answer 14. Contrastingly,

the saturation graph for Question 3 shows a slow decline, and the

saturation level of the entire answer set is 0.62, which is very high

compared to Questions 1 and 2’s ending saturation level of 0.14.

Question 2 is the middle ground where the saturation level declines

steadily till the end of the collection. Whether the batch should be

stopped before the last answer or not in this example depends

largely on the requester’s preference.

Overall, dynamic notification would be useful for requests such

as Question 1 and Question 2 where the answer set eventually

reaches a saturation point and the system can notify the requester

to stop the batch since the likelihood of the incoming answers

carrying sufficient new information is small. On the other hand,

Question 3 is a type of open question that might never reach a

saturation point due to the wide range of possible answers. In this

case, the requester might want to define the number of idea clusters

that he wants to obtain from the answers instead of defining a

saturation level to end upon.

5.3.3 Idea Clusters
After manually assigning the similarity scores for each of the

answer pairs, we clustered the answers using the clustering

algorithm mentioned previously in the Implementation section.

Then we manually extracted the keywords for all the clusters that

contained more than one answer.

Figure 7 shows the three main idea clusters for Question 1 that

asked the workers to find a situation in which the coffee maker

would not be good product. The largest cluster was about situations

when people were in a hurry and do not have sufficient time to

manually make coffee. This addresses one of time-consuming

nature of the coffee maker. Based on this feedback, the requester

might consider adding an alternative way to making coffee for

people in a rush to make the product more suitable for all situations.

The second cluster addresses the small amount of coffee that

the coffee maker can make at one time. This is especially

problematic when combined with the slowness of the coffee maker

and will make the product almost useless in settings such as

meetings or conferences. The third group simply claimed that the

product would be useful in all situations. The answers in this cluster

show the difficulty of extracting keywords automatically as the

answers seem to be saying the exact opposite things on the surface

level: one answer said “no such situation” and another said “it is

suitable in all situations.” Ironically, ‘no situation’ and ‘all

situations’ are referring to the same idea since the question asked

for a situation in which the product would not be good. So the first

answer is actually saying that there is no situation for which the

product is not good.

The main clusters for Question 2 indicated that the product

useful when one want to be unique, is making coffee for oneself,

and want to enjoy making coffee slowly on a day off or Sunday

morning. This presents an interesting point as it shows that the

drawback of a product in some situations can also become merit of

the product in other situations. Question 3 had a total of 21 clusters

showing a wide variety of the answers. Some workers answered

that there is no feature they would like to add. Others answered

easier and faster preparation time, more space, availability in

different colors, and warranty in case the glass breaks.

Looking at the keywords and the answers in each cluster, we

concluded that the main clusters were good indicators of the

product’s strength and weaknesses. The keywords also provided a

good summary general impression of the product without having to

read through the individual answers. This would especially be

useful for the requesters who want to have sufficient data, but are

concerned about the time and effort that would be needed to sort

out all the answers. The clusters also allow the requester to stop the

batch after receiving a certain number of ideas, rather than waiting

for the answer set to reach a saturation point.

5.4 Comparison of the Workers’ Estimate and

Saturation Point
In the first experiment, we looked at what the MTurk workers

thought was an appropriate number of HITs for feedback on a

Kickstarter project. The result showed that they did not consider the

range of possible answers that differed based on the question, and

they gave similar number of HITs for each of the question.

However, experiment 2 showed that the appropriate number of

HITs differs greatly based on the questions asked. Also, the median

for the estimated number of HITs was in the hundreds, while the

result based on the saturation point showed that Question 1 only

required around 15 answers to gather the main ideas. Thus the

workers’ estimate number of HITs were almost tenfold the actual

number of HITs that were needed. The dynamic notification of

saturation level would be extremely useful in this case as it would

save time and money for the requester. The actual number of HITs

that was needed for Question 3 is vague as it does not reach a

saturation point. However, the visualization of the clusters would

be a good indicator of the range of ideas that are mentioned in the

answer set and might help the requester decided when to stop the

batch.

6. CONCLUTION
Crowdsourcing technology offers a promising approach to receive

diverse feedback within a reasonable short time. More and more

systems are designed to mediate the need between feedback

providers and consumers. However, guidelines for determining the

sample sizes are virtually nonexistent. When it comes to paid

workers, the trade-off between the cost and the saturation of

information is important. In this study, we propose a system to

check data saturation pattern during the data collection process. We

found that early saturation point exist in some feedback pool.

Therefore, it is valuable to automatically notify the requester to stop

collecting new data based on the feedback. Moreover, we provide

the requester with multiple views of the idea distribution among

collected feedback. As a result, the requester can view the

saturation level along with the summary of the collected feedback.

7. FUTURE WORK
We see at least three points that can be refined through future work.

First, we should examine the variance of the estimated sample size

among real visual designers or project creators. Their estimations

on the number of HITs will reflect the real problem. If

crowdsourcing becomes a promising approach to receive critiques

for real designers, sample size will be an inevitable problem.

Second, the pairwise similarity scores of the answers are calculated

manually in our present work. We should incorporate natural NLP

Toolkit to get real-time similarity score so that we could provide

real time notification of data saturation. Finally, the usefulness of

our system has not been evaluated from real users. We should do a

usability test on visual designers or project creators in our next

stage.

8. REFERENCES
[1] Feedback Army http://www.feedbackarmy.com/

[2] Usability Hub https://usabilityhub.com/

[3] Amazon Mechanical Turk

https://www.mturk.com/mturk/welcome

[4] David R. Karger, Sewoong Oh, and Devavrat Shah. Iterative

Learning for Reliable Crowdsourcing Systems. NIPS, 2011.

[5] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan.

Whose vote should count more: Optimal integration of labels

from labelers of unknown expertise. NIPS, 2009.

[6] Guest, G., Bunce, A., & Johnson, L. (2006). How many

interviews are enough? An experiment with data saturation

and variability. Field Methods, 18, 59-82.

[7] Michael D Greenberg, Bryan Pardo, Karthic Hariharan,   and

Elizabeth Gerber. Crowdfunding support tools: predicting

success & failure. In CHI’13 Extended Abstracts on Human

Factors in Computing Systems, pages 1815–1820. ACM, 2013.

[8] Tanushree Mitra and Eric Gilbert. The Language that Gets

People to Give: Phrases that Predict Success on Kickstarter. In

CSCW’14. ACM

[9] Vincent Etter, Matthias Grossglauser and Patrick Thiran.

Launch Hard or Go Home. In COSN’13. ACM

[10] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another label?

improving data quality and data mining using multiple, noisy

labelers. KDD, 2008.

[11] David R. Karger, Sewoong Oh, and Devavrat Shah. Iterative

Learning for Reliable Crowdsourcing Systems. NIPS, 2011.

[12] W. Willett, S. Ginosar, A. Steinitz, B. Hartmann, and M.

Agrawala. Identifying Redundancy and Exposing Provenance

in Crowdsourced Data Analysis. IEEE Transactions on

Visualization and Computer Graphics, 2013.

[13] A. Strehl, J. Ghosh, and R. Mooney. Impact of Similarity

Measures on Web-page Clustering. AAAI, 2000

[14] H. Wang, W. Wang, J. Yang, P. S. Yu. Clustering by Pattern

Similarity in Large Data Sets. SIGMOD, 2002.

[15] M. Gordon. User-Based Document Clustering by

Redescribing Subject Descriptions with a Genetic Algorithm.

Journal of the American Society for Information Science,

1991.

[16] T. Mitra, E. Gilbert. The Language that Gets People to Give:

Phrases that Predict Success on Kickstarter. CSCW, 2014.

[17] M. Greenberg, B. Pardo, K. Hariharan, E. Gerber.

Crowdfunding Support Tools: Predicting Success & Failure.

CHI, 2013.

[18] V. Etter, M. Grossglauser, P. Thiran. Launch Hard or Go

Home! COSN, 2013

http://www.feedbackarmy.com/
https://usabilityhub.com/
https://www.mturk.com/mturk/welcome

